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Foreword 

The results contained in this paper are being submitted for iournal publi- 

cation under an abbreviated format. Issued as a Research Report, this material 

constitutes a preprint and i s  given limited distribution in order to provide an early 

dissemination of current information. 
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ABSTRACT 

The theoretical photodetachment cross section for the negative atomic oxy- , 

2 2 5  
gen ion in i t s  normal ground state, (1s) (2s) (2p) , has been investigated for the 

three transitions; 0- (2P) + hv + 0 ( P) + e, 0- (2P) + hv + 0- ( D) + e, and 
3 1 

- 2  1 0 ( P) + hv --c 0 ( S) + e i n  the photon energy range up to 12 ev. In addition, 

the scattering cross section for the neutral oxygen atom, the polarizability, the 

attachment cross section and the attachment coefficient have also been determined. 

Results are compared with available experimental and other theoretical data. Ex- 

cellent agreement has been obtained with the latest reliable experimental data. 

The Hartree-Fock treatment ut i l iz ing a modified form of the Slater approxi- 

mation for exchange was used to compute the bound state radial functions for the 

neutral atom and negative ion. The polarization potential was developed from 

first order perturbation theory in conjunction with the adiabatic approximation, 

The continuum wave functions for the outgoing electron were derived from Schro- 

dinger's equation ut i l iz ing the modified Hartree-Fock-Slater and polarization 

potentia Is. 

The agreement o f  the photodetachment and neutral atomic oxygen cross 

sections with experimental data as well as the agreement of  the polarizability 

calculation with experiment i s  a most favorable indication for the validity o f  this 

work. 
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CHAPTER I 

GENERAL INTRODUCTION 

An atom or molecule may absorb a photon o f  sufficient energy so that a 

bound electron may be removed and become free. The absorption o f  such a photon 

of energy hv by  a negative ion N- leads to the production of a neutral atom or 

molecule N 0 
and a free electron w i th  velocity v. 

- 
h v + N -  + No + e .  

The resulting free electron w i l l  have a translational energy equal to the difference 

between the photon energy and the energy expended in  removing the electron from 

the negative ion. I f  E i s  the binding energy of  the electron, then b 
n 

hv = E b + mvL/2, 

where i t . i s  assumed that the neutral atom or molecule i s  so massive compared with 

the electron that the kinetic energy of  the final neutral state may be ignored. 

This process, whereby a negative ion absorbs a photon causing an electron 

to undergo a transition from a bound state to the continuum, i s  known as photo- 

detachment. The in i t ia l  state i s  a negative ion i n  a radiation field and the final 

state i s  a neutral atom or molecule and a free electron. I f  a beam of radiation 

passes through a gas composed of  negative ions, the ions act as though they had 

a cross section u 

This cross section i s  defined in such a way that each encounter between an ion and 

a photon removes a photon from the beam. Thus, light o f  frequency v i s  reduced 

(v) (photodetachment) for the incoming photons of energy hv. PD 

1 

'S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, 
Addison-Wesley, Reading, Mass., 1959, p. 162. 
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exp(upD,vnt) i n  passing through a gas of thickness t containing n by a factor 

atoms per cubic centimeter. In practice, 

i s  irradiated with a light source o f  known spectral intensity distribution. In the 

region of  intersection between the photon and the ion beams a current of free 

electrons i s  produced. This current may then be measured and used to calculate 

the photodetachment cross section as a function of  the incident photon energy. 

This paper i s  concerned with the theoretical calculation of this photodetachment 

cross section u 

2 

3 
a beam of mass-separated negative ions 

PD' 
In particular, this paper i s  concerned with the calculation of  electron 

photodetachment from the negative oxygen ion, 0-. Considerable efforts have 

recently been directed toward obtaining good theoretical calculations and im- 

proved experimental measurements o f  the p hotodetachment cross section at diffe- 

rent wavelengths. The work reported here was initiated i n  order to (1) gain a 

better understanding of the importance of various parameters in the calculation of  

4- 9 

photodetachment cross sections, and (2) hopefully obtain better agreement between 

theory and experiment. It i s  to be noted that excellent agreement between the 

present work and the latest reliable experimental data has been obtained. 

The early development o f  related negative ion processes for atomic and 

molecular oxygen as applicable to the formulation o f  the present problem i s  given 

D. R. Bates, Monthly Notices, Roy, Astron. SOC. 109, 432 (1946). 2 

3S. J. Smith and L. M. Branscomb, Rev. Sci. lnst. 31, 733 (1960). 

4J. W. Cooper and J . B. 

5L. M. Branscomb and S. 

6M- M. Klein and K. A. 

'L. M. Branscomb, D. S. 
11 1, 504 (1958). 

8L. M. Branscomb, S. J. 
(1 965). 

- 

- 
Martin, Phys. Rev. 123, 1482 (1962). 

J. Smith, Phys. Rev. 98, 1127 (1955). 

Brueckner, Phys. Rev. 11 1, 11 15 (1958). 

Bruch, S. J. Smith, and Sydney Geltman, Phys. Rev. 

- 

- 

Smith, and G. Tisone, J. Chem. Phys. (to be published) 

9S. J. Smith, i n  Proc. Fourth Int'l. Conf. on Ionization Phenomena in  Gases, 
Uppsala, 1959, edited by No R. Nilsson (North-Holland Publishing Co., 
Amsterdam, 1960), p. 219. 
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by Bates and Massey. lo The experimental study of photodetachment processes 

originated in 1953. 

t ive hydrogen ions and soon afterwards cross sections were determined for negative 

ions of other gases. Only recently has improved and relatively sophisticated in- 

strumentation become available enabling more reliable measurements to be made 

of  the photodetachment cross section. A l l  the published work done in  this connec- 

tion has been by Branscomb, Smith, et al., of  the National Bureau of Standards. 

Their latest data on oxygen are presently unpublished,* but the results w i l l  be given 

in this paper for comparison with the results of the present theoretical work. 

3 
These first laboratory observations were concerned with nega- 

3 

In order to adequately introduce the present work, it i s  felt necessary to 

briefly sketch the need for such calculations. Emphasis on photodetachment or 

negative ion bound-free transitions has, in the past, been placed largely on atomic 

hydrogen. This i s  important i n  astrophysics because quanta o f  energy i n  the ultra- 

violet, visible and near infrared spectral regions can photodissociate the hydrogen 

ion into a neutral hydrogen atom and a free electron. These negative ions o f  

hydrogen account for most of the continuous absorption i n  late-type stars. 

lation as to the astrophysical importance of  0- absorption has been ~uggested,~ but 

a more recent commentary 

of  the stars. 

11 
Specu- 

1 1  
states that it i s  unlikely that this i s  important in any 

The absorption of  continuous radiation by 0- accounts for the release o f  

electrons and destruction of negative ions i n  the sunlit ionosphere, and can be a 

source o f  opacity i n  certain regions of the spectrum for high temperature plasmas 

or gas caps containing oxygen. 

upper atmosphere i t  i s  necessary to  know the photoabsorption cross section of the 

In order to completely understand the earth's 

'*-14 A r - - - f  -....--- ' :mnr\r)nn+ c ; n r p  it i s  the various gaseous constituents. ~ ~ ~ l l l l c  U A y y G l I  i s  ~ ~ n y ~ ~ ~ - s ~ .  -...-_ 

'OD. R. Bates and H. S. W. Massey, Trans. Roy. SOC. (London) A239269 (1943). - 
"L. H. Aller, Astrophysics, The Atmospheres of  the Sun and Stars, Ronald Press 
New York (1963), p. 194. 

'*P. J. Nawrocki and R. Papa, Atmospheric Processes, Geophysics Corporation 
of America, GCA No. 61-37-A, Bedford, Massachusetts (1961). 

13D. R. Bates and H. S. W. Massey, Trans. Roy. SOC. A192, 1 (1947). 

14R. B. Crains and J. A. R. Samson, Phys. Rev. 139, A1403 (1965). - 
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dominant constituent above 160 km. The theoretical background for interpreting 

and understanding the physical processes capable o f  producing radiation in the hot 

flow field surrounding a reentering ballistic vehicle comes, in part, from the bound- 

free continuum of negative ions. l 5  The photodetachment cross section i s  of parti- 

cular interest i n  connection with emissivity calculations for heated air. Compari- 

son of  experimental and calculated values of  the photodetachment cross section are 

also very valuable in the theoretical study and modeling of related effects which 

do not readily lend themselves to experimental i nve~ t iga t i on .~  Such difficulties 

necessitate the need for good theoretical calculations. 

1 

Various semitheoretical models presently exist for computing photodetach- 
4 

ment cross sections. 4r6'9f lo Cooper and Martin have stated, "Our understanding 

o f  the related processes of . . 
fragmentary. Even though much progress has been made 

of  atomic hydrogen, l i t t le has been done for heavier atomic systems." These various 

methods and the subsequent results w i l l  be discussed and compared with available 

experimental data along with the results of  this paper., The primary diff iculty in 

treating such problems i s  i n  determining the distortion of the wave functions o f  the 

neutral atom by the outgoing electron and calculating the resulting polarization 

potential. The photodetachment cross section i s  very sensitive to this term in the 

total final state interaction 

briefly a recently developed method for determining the polarization potential 

This method i s  used in  the present calculations and results i n  excellent agreement 

being obtained with the latest reliable experimental data. The development o f  the 

present model w i l l  be given in considerable detail with emphasis on the develop- 

ment & the pc!nrlr&lcn pcfpntln!, contintmum wove fiinctinns and bound state radial 

functions for 0-. 

photodetachment from negative ions i s  at present 

for the important case 

Because o f  i t s  importance, this paper w i l  I review 
16 

15R. Go Breene, Jr. , RVlP Reentry Radiation Measurements. A Theoretical Back- 
ground (U). Physical Studies, Inc. , SR No. 1 , Kettering, Ohio (1964). 

I%. R. Garrett, Phys. Rev. 140, A705, (1965). - 
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In addition, the elastic scattering cross section for the neutral oxygen atom 

i s  calculated and compared with various other theoretical and experimental results. 

This i s  computed by calculating the phase shi f ts of the partial waves at various 

electron energies. The attachment coefficient, a , i s  also calculated as a function A 
of electron energy for atomic oxygen., This i s  given by vu where v i s  the velo- A 
ci ty of  the incident electron and u i s  the cross section for the capture of  an in- 

cident electron of energy mv /2 into a level belonging to the ground state of 0- 
by  a normal 0 atom. This i s  important in the study of  the formation of negative 

oxygen ions 

The relation between photodetachment and electron absorption cross sections may 

be derived by considering detailed balancing at equilibrium between electron cap- 

ture and photoionization. 

A 2 

10 
and again finds application in our understanding the ionosphere. 

1 
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CHAPTER II 

DEVELOPMENT OF THE CROSS SECTION EQUATION 

1. Introduction 

To compute the cross section for photodetachment the init ial  state i s  taken 

as a negative ion in a radiation field and the final state i s  a neutral atom and a 

free electron. The electromagnetic energy of  the radiation field acts as a small 

perturbation on the negative ion and time dependent perturbation theory can be 

used to calculate the probability per unit time that this perturbation w i l l  produce 

a transition. This i s  the transition rate for absorption. An ion i n  a field of  electro- 

magnetic radiation experiences interactions between i t s  magnetic moments and the 

magnetic field and between i t s  electric charges and the electric field, Only  the 

latter w i l l  be considered since the magnetic interaction i s  very small compared to 

the electric interaction. 

The wavelengths to be considered are large compared to the dimensions of  

the atom so that the electric field can be considered constant over any region 

occupied by the atom. The interaction energy H' can be obtained by adopting 

the Hamiltonian for a charged particle i n  a radiation field where the momentum 

operator 7 i s  replaced by the usual expression P - ex, where x i s  the vector 

potential. Thus the whole radiation field can be put into the vector potential 

which i s  perpendicular to the direction of  propagation. This chapter w i l l  develop 

the normalized vector potential, from this find the interaction energy, then derive 

the general photodetachment cross section, and finally reduce this general equation 

to the particular form applicable to the present problem. 



J' 
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2. Vector Potential 

The electromagnetic field w i l l  be treated classically by assuming that the 

vector potential can be specified without any uncertainty at any space-time point 

by using Maxwell's equations in free space. 

In  free space the vector potential can be made to satisfy 

2 -  o2X - (l/c ) A  = 0 and VOX = 0. 

A typical plane wave solution of the above i s  

- -  - 
A(r, t) = ;a cos& r - ut) with 8 01 = 0, (2.2) 

where (a) i s  a constant scalar amplitude, 2 i s  a unit vector perpendicular to 5; and 

o = kc. The electric field E = -A * IS 
- 

- 
E(t) = - 8akc sin& F - ut). (2 0 3) 

The energy density i s  defined by the usual equation where the average energy re- 

siding i n  the electric and magnetic fields are equal. 

(2 4) 
- 2 2 2  2 - 6 = E.B = (1/4rr)k c a sin 6 - r  - wt) .  

and i t s  magnitude averaged over a period (2rr/u) of the oscillation gives the time 

average of  the energy density 

2 2 2  6 = (1/8n)k c a . 
The photon density (p ) i s  the average energy density (e) divided by the energy 

per photon (hck) 
n 

The amplitude a in  the vector potential may thus be expressed i n  terms of  the 

photon density by  normalizing to one photon per unit volume and calling this 



8 
* 

volume T. 

2 1 - kca 
7 - m  

Solving for a gives 

a -  

Then the normalized vector i s  

- -  A(r, t) = 2 (gyI2 cos&* r -ut). 

(2.7a) 

3. Matrix Elements for the Transition 

Expanding the above cosine term into i t s  exponential parts and keeping only 

that portion which makes the final state energy greater than the in i t ia l  state energy 

and leads to absorption, l 5  yields 

- -  - 
A(;, t) = ’ exp(ik r - i w t ) .  

The Hamiltonian operator describing a charged particle in a radiation field i s  

Where V(7) describes the coulomb or other interactions. Expanding, 

Now i n  the present gage 

Thus 

H = H - (e/m)Fox + (e2/2m)A 2 , 
0 

(2.12) 

* 
The normalized volumes w i l l  be carried because of  their units. 
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I )  

where H i s  the unperturbed Hamiltonian. Making the usual assumption that 
0 

(2.13) 2 2 
(e/m)v 0 >> (e /2m) A , 

then 

and the matrix elements for the transition probabilities are, considering only one 

component of  Y and taking exp(iz F) 1 (dipole approximation). 

17 
But 

2me 2 A 2 - -- ( < f l P x l i > l  . 
m2 k c t  

i>  = i m w  < f l x I i > ,  
P 

since 1<r>I2 = l<X>I2 + l<y>I2 + 1e>I2 and on the average a l l  are equal then 

l<r>I2 = 31642  and i t  follows that 

(2.15) 

(2.16) 

4. Gene.raI Cross Section Equation 

The transition rate or transition probability per unit time for absorption of  a 

quantum of energy A w  from the radiation field and finding the system i n  the desired 

final state i s  given by the familiar expression 
17 

2+ I . .  I I2 
w = A pfiI p(Ej, (2.17) 

where p(E) i s  the density of  final states for the electrons and i s  given by 

(2.18) 

"Lo I o  Schiff, Quantum Mechanics, McGraw-Hill Book Co. , Inc. , New York, 
1955, p. 261. 
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t 3 

where L 

and dQ i s  the solid angle into which the ejected electron with velocity 

momentum P goes. Taking E = P /2m then 

represents the volume that confines the particle in the energy range dE 

and 
2 

giving 

and 
2 2  2 3 2 

45r m ve w L I< fir1 i >I w =  P 
n dQ. 

Now dividing W by the incident photon flux I gives the cross section 

do = W/I where I = C/T . 

(2.19) 

(2.20) 

(2*21) 

Combining terms, the expression for the cross section becomes 

(2.22) 

where the momentum, mv, has been written as Ak, 
3 

Taking L as a unit volume, expressing r and L i n  atomic units and the 

energies in Rydberg units, the above equation becomes 

(T = (4~/3) kap- 2 (E, + E-) F(i , f), 
1 u  u si 

(2 23) 

where a i s  the fine structure constant and E i s  the electron energy. The quantity 

F(i, 9 in the above equation involves the init ial  and final states. Since there are 

a number o f  ini t ial  and final states, this expression must be averaged over the 

possible init ial  states and summed over the final states. 

f e 
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(2 24) 

where w. i s  the number o f  ini t ial  states and P i s  the appropriate overlap integral 

o f  the electrons which are in the same state both before and after detachment. I f  
2 

one-electron central field orbitals are used, then F i s  conveniently expressed as 

I 

where the C i s  are obtained by evaluating the 

elements for each transition of  interest and the 

a0 
M = s R n p  r 121 0 

M2 1, 
+ 5 + 1  1+1 

angular portion of the dipole 

M 's are the radial integrals Q 
2 

r dr. Rk,Qcl 

(2.25) 

matrix 

(2 ., 26) 

The selection rule on the azimuthal quantum number 8 comes from considering only 

an electric dipole transition where an nf electron i s  removed from a bound state 

orbital into the continuum. R i s  the radial bound state orbital for the n!. electron 
nd 

i s  the radial wave function for the free electron with angular momentum k ,lkl and R 

quantum number 1 1 Each of these i s  normalized so that 

R:k(r) ? dr = 1, 
0 

and 

(2.27a) 

(2.2%) 

Combining these various terms the general cross section equation may be written as 

5. 0- Photodetachment Cross Section 

2 2 5  
The stable bound state of the negative oxygen ion i s  the 2p ground state 

which arises from the (1 s) (2s) (2p) configuration. An electric dipole transition 

i s  made in the photodetachment process whereby a 2p electron i s  removed from a 

bound state crbital to a continuum state. This continuum may become either a free 
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s-wave or a free d-wave depending on the final angular momentum state it occupies 

since the azimuthal quantum number (I) must change by one unit for this transition. 

However, for 0-, there are three transitions possible since the neutral oxygen atom 

may be left i n  the 3P, 'D or 'S states after detachment. The threshold excitation 

energies (E ) for each of  these are 1.465 ev, 3.432 ev and 5.66 ev respectively. 

Because of  experimental difficulties i n  accurately measuring the latter two, this 

paper w i l l  emphasize the P state, i o e o ,  Om( P ) + O( P ), which occurs at 

longer wavelengths than the other transitions. The cross section for the other states 

can be obtained by using the same radial matrix elements, the appropriate angular 

parts of  the dipole matrix elements and the binding energies corresponding to each 

threshold. This w i l l  be done and certain conclusions drawn concerning the general 

behavior o f  the resulting cross section curves, 

9 
b 

3 2 3 
1/2 2 

In order to calculate the cross section for photodetachment, integrations 

must be performed over the passive electrons (overlap integral) and the active 

electron. This involves calculations of  the radial wave function for the bound and 

free orbitals. Products o f  one-electron central field orbitals w i l l  be used to des- 

cribe the wave function of an individual bound n l  orbital for both the ion and 

neutral atom. The method of calculating these functions w i l l  be described in  

Chapter IV. The continuum wave functions for a given angular momentum state 

are obtained by  solving the Schrodinger wave equation for the free electron at the 

desired electron energies in the potential f ie ld due to the residual neutral atom. 

This interaction i s  most important and must be treated very carefully. The cross 

section i s  extremely sensitive to the exact form of the total interaction potential. 

The polarization interaction used in the calculation of the continuum wave functions 

I C  rlev~!nped in  the next chapter. 

The overlap integral P, previously mentioned, gives a correction to the 

cross section b y  allowing for the distortion of the wave functions of  the passive 

electrons due to the ejection of the active electron. 

are being used and there are four 2p electrons i n  the same state before and after 

detachment, the square of the matrix element involving the product of  each of  these 

gives the value of  P o  

3 
Since product wave functions 



Transit ion 

o-(~P) + O ~ P )  t e 

13 

(2 29) 

0 c2 C 

1 2 

This distortion i s  only slight and the distortion of  the inner core (1 s) and (2s) elec- 

trons w i l l  therefore be neglected and the overlap integrals P 

as unity. 

and P w i l l  be taken 1s 2s 

The values of  the Cp's mentioned in  the previous section are determined by 

considering the relative probabilities for the three transitions of 0- going to neutral 

0 plus a free electron. The following transitions are possible (see Table I) and the 

number of  possible final states i s  given by (25 + 1) (2L + 1)  which are 9, 5 and 1 

respectively for the 3P, 'D,  and S states. The relative probability for each of  

these may then be taken as 1 ,  5/9, and 1/9 respectively. By combining the P, 
1 

i t i s  found that 1 and 2 states respectively exist for these additions. 

1 

3 

1 D and S states of  0 with first the s and then the d states of the continuum waves, 

The values o f  C and C for the above three transitions are tabulated 
0 2 2 

be low 

TABLE I 

' Values of  Co and C2 for the Various Final State Configurations 

I I I I 



CHAPTER 1 1 1  

PO L A R l  ZATlON POTENTIAL 

1 Introduction 

Existing for the theoretical calculation o f  photodetachment cross 

sections correct for polarization (the interaction potential due to the distortion of 

the neutral atom by the outgoing electron) by semiempirical means which do not 

arise naturally from the formalism of the problem. These methods have not yielded 

cross sections which are in complete agreement with experiment. Results are com- 

pletely unreliable i f  this interaction i s  neglected, however when these semiempirical 

parameters are introduced, the only criteria for their accuracy is, o f  course, agree- 

ment with available experimental data. This section w i l l  consider the distortion of 

the neutral atom by the outgoing electron and develop a polarization potential from 

this interaction which describes the effect of  the polarized atom on the scattered 

electron. First order perturbation theory w i l l  be used in conjunction with the 

adiabatic .approxi mat ion. 

The adiabatic model i s  based on the abil ity of  the neutral atom to polarize 

in response to the instantaneous position of  the outgoing electron. Thus assumes that 

the velocity o f  the free electron i s  small compared to the orbital velocity of the 

bound electrons. Since the energies of the outgoing detached electron are small 

(-10 ev or less), the bound state wave functions have sufficient time to adjust or 

respond to the influence o f  the perturbing field. This method has been applied to 

yield the low energy scattering cross section for electron-cesium atom collisions by 

Garrett and Mann 

by Garrett. 

18 
and very recently to  electron scattering from lithium and sodium 

16 

18W. R. Garrett and R. A. Mann, Phys. Rev. 130, 658(1963). - 
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2. Formulation o f  the Problem 

Consider a bound electron of the negative ion as having been detached so 

that the system now consists o f  a neutral atom and a free electron o f  relatively low 

energy. 

The Hamiltonian for the entire problem i s  

H = H (P) + Hf(F$ + W(T, r$. 
a (3.1) 

H i s  the Hamiltonian for the atom, H i s  the free-particle Hamiltonian, and W 
a f 

the interaction Hamiltonian representing the interaction of  the outgoing electron 

with the bound electrons. 

Z 1 

W(7, Ff) = 1 I 

I?. - P I i=l I f 

The vectors and r. represent the positions of  f I 

(3.2) 

the free electron and one of  

the bound electrons, respectively. 

Init ial ly a one-electron atom w i l l  be considered and this w i l l  then be ex- 

tended to an atom with atomic number Z. 

H + @ ) = E  @(q, 
a o  0 0  

(3.3) 

where the eigenvalue E 

atom are supposedly known 

and the normalized eigenfunction iP (r) for the neutral 
0 0 

The Schrodinger equation for the complete system may be written as 

where \k(;, T )  i s  the complete wave function for the system. f 
Neglecting exchange, the complete wave function may be written 

where the perturbed wave function, @ (F, F ), for the bound state considers the 

influence o f  the perturbing field by i t s  dependency on T and $(;$ i s  the 
f 

f 



free-particle wave function. Th perturbed wav 

16 

function w i l l  now be written as 

ib (7, F$ = Q0(3 + XF, ;f), (3 6)  

where Qo(F) has previously been defined and X(f, F )  i s  the perturbed part o f  the 

orbital wave function resulting from the outgoing electron which i s  at the position 
f 

- 
The requirement i s  also imposed that 'f' 

< @  ,x> = 0. 
0 

The Hamiltonian for the entire problem may now be written as 

[ H a (a + Hf($ + W;, ;$I [ @ 0 (F) + x(F, $J $(;a 

(3.7) 

3. The Polarization Potential 
* * 

I f  the above equation i s  multiplied from the left by @ C;) Jr (F$ and inte- 
0 

grated over a l l  space, the following result i s  obtained 

where use, has been made of  the facts that ih 

gonal and hermitian, and 6 

i s  normalized, ip and x are ortho- 
0 0 

i s  the eigenfunction o f  H with eigenvalue E 
0 a 0 

Considering the first two terms in the above equation, the first represents the 

mutual interaction energy of the outgoing electron with the atomic electron and the 

second term i s  identified as the mutual interaction of  the free electron with the per- 

turbation o f  the atomic wave function. Therefore the polarization potential seen by 

the outgoing electron due to the distortion of  the atom i s  

v (F) = < Q  , wx>. (3.10) 
P f  0 

Equation (3.9) may be written in the form 
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<$, (Hf + Eo + <go, wih > + <Go, wX> - E) JI> = 0. 
0 

From this i t  follows that 

E = E  + E  + < ( P  , w @  > + < +  , w X > ,  (3.11) 
o f  0 0 0 

and substituting the result for E from the above equation into equation (3.8) and 

simp I i fying 

+ <@o, wx> m + <go, WX'X]  JI -  (3.12) 
0 

This equation may now be simplified by making use of the adiabatic approximation 

mentioned at the beginning of this section. Since the Hamiltonian for the free 

electron changes relatively slowly, then solutions o f  the above equation w i l l  be 

obtained by fixing r thus v2  rf = 0. This results i n  the first term o f  the above 

equation being zero. This equation now becomes 
f' 

The interaction w(J, F )  can now be considered as a perturbation on the 

unperturbed system Ha" Since this term as well as the polarization perturbation 

X i s  small, then only terms through first order w i l l  be retained i n  the differential 

equation for determining X. With this approximation equation (3.13) becomes 

f 

4. Multielectron Atom 

For a multielectron atom the polarization potential w i l l  be developed from 

first order perturbation theory uti l izing a modified form of the Hartree-Fock theory. 

The Hamiltonian for the complete atom w i l l  be written as follows: 
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H (9 = t H.($ , 
. I  
I 

a 

where 

(3.15) 

H.(T.) depends on the coordinates of the i th  electron and the average effect of  the 

other electrons. The first term i s  the kinetic energy of the i th  electron, the second 

term i s  the potential energy i n  the field of the nucleus where r. i s  the distance from 

the nucleus to the i th electron, the third term i s  the repulsive coulomb potential 

interaction between the i th and Z-1 other electrons. A spherical average of  this 

repulsive interaction i s  taken. The final term i s  the exchange integral which arises 

from using determinantal functions in the Hartree-Fock model. The wave function 

for the atom w i l l  then be written as a determinant 

I I  

I 

with 

H. $. = E. $. . 
I I  I I  

(3.16) 

(3.17) 

The complete wave function i s  written 

where 

<$.,x.>=O and <$.,$.>= 1. (3.19) 
I I  I I  

Uti l izing this model the first order equation (3.15) becomes 

(3.20) 
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where 

- 1 
W = I: w. and w. = 

i l  I IFf - riI 
Equation (3.20) i s  the differential equation for determining the perturbation X. of  

the single electron orbital 9. of the neutral atom. The total polarization potential 

i s  then 

I 

I 

(3.21) 

or 

This polarization potential can thus be calculated for an atom by considering 

the contribution due to  each orbital which i s  determined from the modified Hartree- 

Fock solution for the atom. 

An estimate of  the exchange term in  the Hartree-Fock theory can be obtained 

very conveniently by using wave functions given by the Thomas-Fermi model of the 

atom. 

o f  the Hartree-Fock method are retained by replacing the exchange potentials by a 

universal exchange potential. This i s  obtained by suitably averaging over the in- 

dividual exchange potentials to get an average charge density and exchange poten- 

tial. This average o f  exchange potential i s  spherically symmetric and may be rep- 

resented by 

19 This i s  known as the simple Slater approximation. The essential features 

(3.22) 

When equation (3.22) i s  inserted into (3.15) very close approximations to the 

Hartree-Fock solutions are obtained. Agreement of the subsequent calculated 

p hotodetac hment cross-sections and scattering cross sect ions with experimenta I 

data provide a useful criterion for the validity of  this model. 

19J0 C. Slater, Quantum Theory of Atomic Structure, Vol. II, McGraw-Hill, 
New York, 1960. 
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5. The Radial Equations 

At this point the differential equation for determining X. for an orbital 
I 

may be written as 

(3.23) 

This equation can be separated and the radial equations for the various angular 

momentum states written. A coordinate system i s  chosen which has the Z-axis 

parallel to the position vector r of  the outgoing free electron. The interaction f 
2/rif can be written as polynomials in terms of P (cos 8. ) by making use of the x I f  
expansion 

where r the greater of  r. and r The quadrupole and higher 

order terms in the above expansion w i l l  be dropped leaving only the first two terms 

in the series. When these two terms are substituted into the bracketed term o f  

equation (3.20)' the term becomes 

i s  the lesser and r < > I f' 

(3.25) 

It can now be noted that the first term above can be written as 

Since the +.Is are normalized the first term in the above equation goes to 2/r for 

large values of r and the second termgoes to zero. The 2/rf term then calcels 

the second term in the equation leaving only the dipole term (2rc/r> ) cos 8. For 

smaller values o f  r 

I f 

2 f 

the monopole term becomes appreciable but w i l l  be small f' 
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compared to the coulomb potential term. Thus the dipole approximation w i l l  be 

made at this point and only the third term in  equation (3.25) w i l l  be retained. 

The following pair of  equations i s  now obtained for determining the perturbed 

wave X.. 
I 

2r. 

'f 

I + V(F.) - As(Fi) - E Xi(ri, rf) = - -cos 8 +.(;.) for r >r (3.27a) 
I 0 2 I I  f i f  1 - -  

and 

2rf - [- V: + V6.1 - A 6.) - Eo Xi(ri, rd = - 7 cos e +.(r.) for r. >r (3.27b) 
I S I  I I  I f "  

r. 
I 

I - -  

where V(E) i s  the coulomb potential and A (K) i s  the Slater exchange term. These 

may now be solved and the solutions joined at r. = r to obtain the first order pertur- 

bation o f  each electron orbital 4.. The dipole polarization potential may now be 

determined from equation (3.21). 

I S I  

I f  

I 

- -  
Vp(';) = { cos 8 Xi(ri , rf) dTi. 

I 
(3.28) 

The individual perturbation of the electron orbitals for the various allowed 

angular momentum states must now be considered. First, equations (3.27) w i l l  be 

reduced into radial equations and appropriate radial integrals by writing 9. and X. 

i n  the form 
I I 

and 

m+m' m' 

and for convenience the following change invariables w i l l  be made 

(3.29) 

(3.30) 

and 
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(3.31) 

When these functions are substituted into the differential equations (3.27)' they 

separate into the following two radial equations 

2r< 
r d  = - P  (ri). (3.32) 

2 nll 
d2 ai''+ ') + V(r.) - A (r,) Eo Unk+!,(ri, 

> I I I S I  - 1  r 

This i s  actually two equations for r > r. and r. > r which must be solved and 

matched at r. = rf. The constants C in equation (3.30) are determined by the 

Clebsch-Gordon coefficients which occur i n  the angular integrations. These 

f I  I f  

I 

coefficients are zero2' unless A t  = 2 1 for 1 + o 
polarization potential can now be written as 

L 

a0 
(3.33) 

or 

In the above equation, K depends on 1' and the number of electrons i n  a given n k  

shell. These constants have been tabulated by Sternheimer. 

polarization potential can be conveniently checked by noting that as rf  + 00, V 

should approach the value -a/r where a i s  the dipole polarizability. A value of 

0.762 A. 

20 The accuracy of the 

4 P 

'..c25 ctstcIcec! 5: the zxyge:: stcm Q: ccr?l.pared tc the !&est eY+erimentc! 
03 

03 21 value of 0.77 A . 

2oR. M. Sternheimer, Phys. Rev. 96, 951 (1954). 

21R. A. Alpher and D. R. White, Phys. Fluids2, 153 (1959). 
- 

- 



23 

6. Polarization Calculations 

The unperturbed wave functions used to calculate the polarization potential 

were taken as the Hartree-Fock-Slater functions obtained from a program originally 

written by Herman and Skillman and modified by Garrett. This program furnished 

the functions V(r), A (r), Eo and P,l(r) in equations (3.32) to calculate the pertur- 

22 

S 
bations U of an orbital whose radial function i s  P 

2 2 4  
The electronic configuration of the normal oxygen atom i s  (Is) (2 s) (2p) . 

n k l .  nL' 

The total polarization was taken to be that contributed by  the two outermost 2s and 

2p shells. The 2s shell, i n  Sternheimer's notation, can undergo the perturbation 

2s + p  and the radial equation must be solved for U 

the unperturbed character i s  s being perturbed i n  such a way that the perturbed wave 

U has p character. There are two modes of excitation for the 2p electrons, 2p 4 d 

and 2p + s, and the radial equation must be solved for the perturbations U 

This notation indicates 2,0+1' 

2,1+2 
Thus the pair o f  equations (3.32) must be solved and matched for each and "2,1+0* 

o f  these three perturbations for each value of  r to obtain the polarization potential 

as a function o f  r 

the actual solution the unperturbed equations were solved over a 441 point mesh for 

r. and for 110 or every fourth point for r An interpolation program was then used 

to bring the polarization potential V (r ) back to a 441 point mesh system to be 

compatible with the functions necessary for obtaining continuum wave solutions for 

the outgoing electron. 

f 
This obviously involves a great deal of  computation time. In f' 

I f '  

P f  

Before completing the discussion on the polarization potential, a brief ex- 

planation of  the matching procedure used to solve equations (3.32) w i l l  be given. 

The numerical integration scheme contains an arbitrary constant i n  the series expan- 

sion used to start the caicuiations. I nls parameier i s  varied auiomaiically in ihe 

computer program unti l  the radial functions and their derivatives match at r. - 
and the solution decreases exponentially at infinity. In practice, the choicewas 

narrowed by repeated iterations until an accuracy o f  f ive to six significant figures 

was achieved in the starting values. 

-I * 

I -'f 

22F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Inc., 
Englewood Cliffs, New Jersey, 1960. 
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7. Polarization Results 

The polarization potential V and the electronic polarizability a are deter- 
P 

mined by  f i rs t  solving the set o f  equations (3.32) for the three perturbed radial 

functions U Each equation i s  of the form 
n M ' *  

and must be joined at the boundary r. = 
I 'f' 

At large values of r, the polarizability was computed from the relation a = 
4 V r . When a became constant, the integration of equation (3.33) was terminated. 

The following values were obtained for the radial portion of the integrals r R(nl+l') 

in the asymptotic region. 

P 4 

4 
r R(oo)(2s+p) = -1.12235, 

$R(o,)(2p+s) = 0.575515, 

4 
r R(oo)(2p+d) = -0.843395. 

20 
Sternheimer gives the following coefficients for the various contributions 

to a for each electron at a large distance from the nucleus. 

Q ImI K 

0 0  4/3 

1 1  4/5 

1 0 16/15 

where 

a(n!.-l) = K r  4 R(oo)(n!+f) 

Thus, in the model being considered the oxygen atom has two 2 s  electrons and the 

value of  a(2s-p) and the polarization potential for the orbital i s  given by 
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2 , Iml =O 

2, Iml =O 

4 4  
a&-.p) = 2 (3) r Rb)(2s-+p), 

Vp(r)(2s+p) = 2 (3) 4 R(r)(2s-+p) 

There are four 2p electrons and the value of  a(2p+s), a(2p-d) and the polarization 

potential are similarly obtained by multiplying by the angular coefficients for the 

various allowed values of  the magnetic quantum number m and averaging over these 



26 

The polarizability i s  then obtained by adding the contribution from the 2s  

orbital to the average contribution from the 2p orbital. I f  the polarizabilities com- 

puted from items 1 , 2 and 3 above are a l l  summed and divided by three and this 

added to the contribution from the 2s orbital, a value of 5.1493 a 

Taking a = 0.529A gives a value of a = 0.7671 . The latest experimental value 

i s  0.77 2 .006A. The polarization potential i s  obtained in  a similar manner and 

i s  shown in  Figure 1. 

3 
i s  obtained. 

0 
0 3 

O 0321 
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CHAPTER IV  

BOUND STATE FUNCTIONS 

1. Introduction 

The bound state radial functions for the negative atomic oxygen ion must 

be accurately determined in  order to calculate the dipole matrix elements, equation 

(2.26). In calculating these matrix elements the 2p eigenfunctions of the ion are 

required. The eigenfunctions for the neutral atom are also required to compute the 

overlap integral equation (2.29) for the passive electrons. In the present calcula- 

tions the modified Hartree-Fock-Slater equations ut i l iz ing the free-electron exchange 

discussed in Chapter 1 1 1  were used to compute the self-consistent solutions for each 

orbital by varying the exchange potential unti l the correct eigenvalues were obtained. 

Simple product functions were then used to describe the complete state of the atomic 

system. The computer program for carrying out the computations was originally writ- 

ten by Herman and SkillmanZ2 and modified by Garrett. The same radial wave func- 

tion i s  used for both sets of  spins for a particular nk orbital. 

2. Method of  Solution 

With distances measured in Bohr units and energies i n  Rydberg units, the 
19 

Hartree-Fock wave equation i s  written 

2 - 
[-V. + V(r.) - A(;.)] $.(;.) = E. $.(r.), 

I I I I I  I l l  

where V(;.) i s  the sum of the nuclear and electronic coulomb potentials 
I 

V(Fi) = - - 22 + & J $.*(;.) - 2 $.(E) d7.t 
r. I I r . .  I I  I 
I 1  ‘ I  

(4.1) 

(4.2) 

and the exchange potential i s  given by 
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The exchange integrals are now replaced by a term known as the Slater ex- 
19 

change potential 

equations much simpler for computation purposes. 

which is, of  course, somewhat less accurate, but makes the 

These equations are reduced to radial equations by writing the function 

With this substitution the differential equations separate into the radial equations 

where it i s  required that 

a 2  1 P (r) dr = 1 .  
0 nL 

(4.7) 

.These radial equations were numerically solved using a 441 mesh point 
- 1/3 

coordinate system scaled to Z . The system of equations was then iterated un- 

t i l  a set of self-consistent potentials was obtained. The Slater exchange potential 

was varied unti l  the correct eigenvalues for both the atom and ion were obtained. 

2 Daca, l+r  ". I\C.I",I.I 

The results for the 2p orbitals of  the neutral atom and ion are shown in 

Figure 2. The results of  the overlap integral for a single passive electron gave a 

value of  0.9575 and the square of the matrix element taken over a l l  four electrons 

gives the subsequent value of 0.7064. 

- f i  
0 2P 2P 
f P P dr = 0.9575. (4.8) 
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CHAPTER V 

CONTINUUM WAVE FUNCTIONS 

1. Introduction 
2 

The free wave radial equations for the outgoing electron of energy k must 

be evaluated at various energies and used i n  equation (2.26) to evaluate the Mis  

used i n  obtaining the photodetachment cross section, equation (2.28). Since a 2p 

electron i s  detached, then this electron must have an angular momentum quantum 

number o f  11 = 0 or I= 2 corresponding to an s or d wave, respectively. The shape 

o f  these functions, particularly the s waves, i s  very sensitive to the potential func- 

t ion used in the calculations. The s-state scattering i s  the major contributor to the 

cross section at relatively low energies. Thus, because o f  the absence of the centri- 

fugal potential, the total interaction potential which includes the polarization 

potential strongly affects the scattering phase shift (6 ) which in turn affects both 

the magnitude and spectral dependence of  the cross section. The interaction poten- 

t i a l  acting on the detached electron i s  taken to be the potential obtained from the 

modified Hartree-Fock-Slater method for the ion plus the polarization potential 

calculated in Chapter 1 1 1 .  

S 

This chapter w i l l  duscuss the method of  obtaining the free wave solutions, 

thp n~ymrl!!Zzn_tI~n p r c ~ ~ & y p  sscdj the calculntion of the phase shif ts which are used 

to calculate the scattering cross section of neutral oxygen and l i s t  some of the 

typical results. 

2. Method of  Solution 

In this formulation the problem i s  to determine the radial functions which 

satisfy the Schrodinger radial equation 
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where P (r) = r R  (r) and which have the asymptotic form kk k l  

For a given partial wave, equation (5.1) i s  solved by the Numerov process for 

various values of the energy k 

Fock-Stater program which furnished the unperturbed bound functions. The arbi- 

trary constant used i n  the starting series expansion was adjusted to give the correct 

asymptotic behavior at large values of  kr, equation (5.2). The numerical inte- 

gration was continued unti l  the ratio V /k 10 at r =R was reached, where 

V i s  the total potential. At this point the absence of a scattering potential was 

assumed and the solutions of  equation (5.1) may be obtained analytically subject 

to the boundary condition (5.2) and by  joining the numerical solution with the 

analytical at R . 
3. Method of Normalization 

2 
over the same coordinate mesh as that of the Hartree- 

2 -4 
T 0 

T 

0 

In the region where the scattering potential i s  taken to vanish, the radial 

equation (5.1) can be written 

[ < - dr 
+ k2] Pkr(r) = 0. 2 

r 

By making the change i n  variables X = kr and Y = X-"*P, equation (5.3) can be 

i ranj fo i - id  i i i t ~  the fc;mI !icr B ~ C S P ! ' S  q ~ o t i o n  

X2Y" + XY'  + 1x2 - (t+;)qY = 0, 
L J 

which has the general solution 

(5 4) 
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2 

where the J's are half-odd order BesseI functions. Transforming this equation 

back to the variables kr and P (r), it becomes kk 

3 3 3 3 (- - I )  sin x - (-1 cos x (-1 sin x + ( - I )  cos x 
X 2 X X 7 

(5.6) 

For the photodetachment process, the s and d waves are of interest. These half- 

odd order functions are listed below. 

I cos x I sin X l o  I 
I I I I I 

The s and d wave solutions of equation (5.3) may now be written 

Psk = Assin (kr) + Bs cos (kr), (5.7a) 

or 

= C sin(kr + S ) ,  (5 7b) 'sk s S 

and 

Pdk = Ad\ [s - 1 1  sin kr - cos kr 1 -+ad\ [%- 1 1  cos kr +T;; 3 sin kr 
5;; 

(kr) 

or 

where 

(5.8b) 
- 3  3 - - 1 1  sin (kr + S A )  - - cos (kr + Sd)/ , - kr 

1 +)? 1 

and tan 6. = B./A.. 2 2 Ci = (A. + B. ) 
I I  I I I 

Note that each of the equations (5.7b) and (5.8b) have the asymptotic behavior 
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- 1  
where each of the coefficients C are chosen as k . The normalization and deter- 

mination of  the phase shifts are now easily accomplished by numerically integrating 

equation (5.1) unti l the scattering potential vanishes and then uti l iz ing two points 

of  the computed eigenfunctions, P (r ) and P (r ) in this region to  determine the 

coefficients i n  equations (5.70) and (5.8a). The normalized continuum functions 
kL 1 k l  2 

P are now obtained from the unnormalized solutions 
‘I 

P 
U P =  

k(A2 + B2) l f l  

and the phase shi f ts  from the relationship 

- 1  6 = tan B/A, 

at each of  the various energies for the desired partial 

tees the correct normalization and i s  advantageous in 

P by the relationship 
U 

(5 9 9) 

(5.10) 

wave. This method guaran- 

that the numerical integration 

need not extend beyond a prescribed point since numerical errors can accumulate. 

4. Results 

The phase shifts for several of  the partial waves at various electron energies 

are tabulated in Table It. Figures 3 and 4 show typical s and d free waves at two 

values of the energy k2 of the outgoing electron. The total potential function 

V(r) + V (r) used in  the calculations i s  shown i n  Figure 5. 
P 
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CHAPTER VI 

RESULTS 

1. Photodetachment Cross Section 

The results of  the photodetachment cross section calculations are shown i n  

Figure 6 along with the experimental results of  Branscomb, Smith and Tisone and 

Smith. 

o f  Reference 8 at the higher energies should be eyed with caution since photo- 

electric effects from the wal Is  o f  the instrumentation make calibration diff icult 

8 

9 
It should be pointed out that the results of  the crossed-beam experiment 

8 
above 3.7 ev. 

At higher photon energies the oxygen atom may be left i n  the excited ' D  
1 

or S states of the ground "configuration." Using the appropriate values o f  the 

binding energy E 

tained by performing the same set of calculations that leave the atom in i t s  3P 

ground state. These results are plotted in Figure 7 where the results o f  this paper 

are compared with the theoretical results o f  Cooper and Martin. 

and the C i s  i n  Table I, estimates of  the cross section are ob- b 

4 

The method of  Klein and Brueckner assumes that the d-wave shifts are small 

and may be considered zero i n  the energy range of  their investigation. They thus 

use the Born approximation, equation (5.8b) with 6d = 0, for the continuum d- 

wave. They also define a range of interaction R and consider the ifitssiG!s In 

equation (2.26) to be zero for r < R (R = 3a ). Outside this region the bound-state 

wave function i s  taken to be the t a i l  of  the radial wave function. 
0 

where N i s  the normalization constant. 
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Schrodinger's radial equation with a polarization potential of the form 

was used to calculate R 

distance (1.2 atomic units) and P i s  the polarization parameter which included 

exchange effects. P was varied until a good fit was obtained. This procedure 

gave a value of  P = 5.589 atomic units and N = 0.374. Numerical calculations 

of the free s-waves were then made for a few energies and fitted to the effective- 

range formu la 

out to r = R. In equation (6.2) r i s  the screening 
2P P 

1 1 2  
k c o t S  = - - + - r  k .  

S a 2 0  (6.3) 

The effective-range (r ) and scattering-length (a) were found to be 0.860 and 

0.613 atomic units respectively. 

computed. Knowing the phase shifts and using the asymptotic forms of the free 

and bound states, a closed form solution for the photodetachment cross section was 

then derived. 

0 

From this the value of 6 at other energies was 
S 

Cooper and Martin's method follows along the same lines with the excep- 

t ion of not using the asymptotic approximations previously mentioned. 

equation for the bound state was solved treating the polarization parameter as an 

eigenvalue. The binding energy was assumed known. The equation was integrated 

out to  approximately 20a and the polarization parameter adjusted unti l the function 

approached zero asymptotically. This gave a value of 5.499 for r = 1.2. Numeri- 

cai integrations were then performed to caicuiate the free s-states, bounu state anci 

s-wave phase shifts. The d-wave phase shifts were also taken as zero in thie formu- 

lation. 

Schrodinger's 

0 

P 

The average value of these two polarization parameters was used to compute 

the polarization potential for these models. The results are shown in  Figure 8. The 

results of  this paper are compared with those of Cooper and Martin, and Klein and 

Brueckner i n  Figure 9. 
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2. Scattering Cross Section for Oxygen 

The elastic scattering of electrons by oxygen i s  calculated by the method 

of  phase shifts and compared to various other available data. The phase shi f ts  are 

tabulated i n  Table II. In units o f  r a  
2 , the scattering cross section i s  

0 

4 2 

k2 
6 = - I (2&+ I )  sin SI. (6.4) 

A detailed discussion of the various available results would be out of  place 

i n  this paper. A comprehensive study to attempt to determine the latest reliable 

data over the energy range shown in Figure 10 was not undertaken for this paper 

and only the results shown in this plot were immediately available for comparative 

purposes. However, at the higher energies agreement with the experiment of  
23 

Neynaber, Marino, Rothe, and Truiillo 

point of Lin and K i ~ e l ~ ~  at the low energy portion of  the curve. Figure 10 also 

shows the theoretical results of other authors. 4'6f 10'25-27 Each of these contains 

the s and p wave contributions as explained by Neynaber, et al. 

is relatively good as well  as the single 

23 

3. Electron Affinity Calculations 

The reverse process of  photodetachment i s  the capture of a free electron by 

a neutral atom and the emission of radiation. By following an argument very similar 

to  that outlined i n  Chapter II the attachment cross section for the above process may 

be derived. I f  this i s  carried through the photodetachment cross section and the 

cross section for attachment are related by the following expression 
28 

23R. H. Neynaber, L. L. Marino, E. W. Rothe, and S o  M. Truiillo, Phys. Rev. 

24S. C. Lin and B. Kivel, Phys. Rev. 114, 1026 (1959). 

25P. Hammerling, W. W. Shine, and B. Kivel, J, AppI. Phys. 28, 760 (1957). 

26L. B. Robinson, Phys. Rev. 105, 922 (1957). 

27A. Temkin, Phys. Rev. 107, 1004 (1957). 

123, i a j i 9 6 i j .  - 
- 

- 
- 

28R. S. Berry, J. C. Mackie, R. L. Taylor and R. Lynch, Spin-Orbit Coupling 
and Electron Affinity Determination From Radiative Capture of  Electrons by Oxygen 
Atoms. Research Report 216, AVCO-Everett Research Laboratory, July 1965. - 
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c 

c .  2 te = 3mc A PD (6 5) 
'b 

In studying the emission of radiation from the above process, the rate o f  emission 

of energy hv per unit of  frequency i s  

where n(e) i s  the concentration of  electrons, n(Oo) the concentration o f  absorbers 

and p 

the attachment coefficient and i s  of interest i n  practical applications. This coeffi- 

cient, 6 , and the absorption cross section have been computed from the previous 

results and are shown in  Figures 1 1  and 12 and compared with results given by 

Bates. 

i s  the energy distribution of the electrons. The quantity 6*Ve i s  called 
e 

A 

29 

29D. R. Bates (ed.) Atomic and Molecular Processes, Academic Press, New York, 
1962, pp. 132-133. 
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CHAPTER VI1 

CONCLUSIONS 

The excel lent agreement of the present results with the experimental photo- 

detachment data of References 8 and 9 in the region up to photon energies o f  3.4 

ev argues favorably for the validity of  the present model. This coupled with the 

agreement of  the scattering cross section at higher energies and the additional fact 

that the polarizability calculations agree so well  with experiment i s  indeed f irm 

confirmation for the validity of the present work. 
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TABLE 1 1 1  

Photodetachment Cross Section 

Y 

i 

- 

hv (e.) 3P l D  

1.47 
1.48 
1.49 
1.50 
1.55 
1.60 
1.65 
1.70 
1.75 
1.80 
1.85 
1.90 
1.95 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
3.10 
3.20 
3.30 
3.43 
3.44 
3.45 

1.36 
2.26 
2.82 
3.23 
4.39 
4.94 
5.25 
5.43 
5.55 
5.62 
5.67 
5.70 
5.71 
5.73 
5.75 
5.78 
5.83 
5.89 
5.97 
6.07 
6.18 
6.31 
6.46 
6.62 
6.79 
6.96 
7.14 
7.38 

I 

3 A d  
& .71 

3.31 

hv (ev) 3P l D  I S  

3.47 
3.50 
3.55 
3.60 
3.70 
3.80 
3.90 
4,OO 
4.50 
5.00 
5.50 
5.67 
5.68 
5.69 
5.70 
5.75 
5.80 
5.85 
5.90 
6.00 
6.50 
7.00 
7.50 
8.00 
8.50 
9.00 

10.00 
11 .oo 
12,OO 

4.36 
5.24 
5.98 
6.33 
6.54 
6.50 
6.39 

8.38 6.27 
5.92 

9.45 6.11 
6.55 

9.42 6.97 

7.32 
7.32 

7.86 6.94 

6.18 
6.92 5,42 

4.89 
7.00 4.60 

0.80 
1.09, 
1.29 
1.43 
1.83 
2.00 
2.07 
2.09 
2.08 
1.83 
1.75 
1.80 
1.88 
1.94 
1.94 
1.82 
1.60 
1.37 



52 

BIB LI 0 GRAPHY 

1. Books 

I 

c 

L. H. Aller, Astrophysics, The Atmospheres of the Sun and Stars, Ronald 
Press, New York (1963), p. 194. 

D. R. Bates, (ed.) Atomic and Molecular Processes, Academic Press, 
New York, 1962, pp. 132-133. 

F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey, 1960. 
S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, 
Addison-Wesley, Reading, Mass., 1959, p. 162. 

L. 1. Schiff, Quantum Mechanics, McGraw-Hill Book Co., Inc., New 
York, 1955, p. 261. 

J. C. Slater, Quantum Theory of Atomic Structure, Vol. 11, McGraw- 
Hill, New York, 1960. 

11. Journals 

R. A. Alpher and D. R. White, Phys. Fluids - 2, 153 (1959). 
D. R. Bates and H. S. W. Massey, Trans. Roy. SOC. (London) - A239, 269 
(1 943) . 
D. R. Bates, Monthly Notices, Roy. Astron. SOC. - 109, 432 (1946). 
D. R. Bates and H. S. W. Massey, Trans. Roy. SOC. - A192, 1 (1947). 
L. M. Branscomb and S. J. Smith, Phys. Rev. - 98, 1127 (1955). 
L. M. Branscomb, D. S. Bruch, S. J. Smith, and Sydney Geltman, 
Phys; Rev. - 1 1 1 ,  504 (1958). 
L. M. Branscomb, S. J. Smith, and G. Tisone, J. Chem. Phys. (to be 
published) (1965). 

J. W. Cooper and J. B. Martin, Phys. Rev. - 123, 1482 (1962). 
R. 8. Cmlr?c 

W. R. Garrett and R. A. Mann, Phys. Rev. - 130, 658 (1963). 

J -  A, R ,  Samson, Phys. Rev. - 139, A1403 (1965). 

W e  R. Garrett, Phys. Rev. 140, A705 (1965). - 
P. Hammerling, W. W. Shine, and B. Kivel, J. AppI. Phys. - 28, 
760 (1957). 

M. M. Klein and K. A. Brueckner, Phys. Rev. - 1 1 1 ,  1115 (1958). 
S. C. Lin and B. Kivel, Phys. Rev. - 114, 1026 (1959). 



53 

R. H. Neynaber, L. L. Marino, E., W. Rothe, and S. M. Trujillo, Phys. Rev. 
123, 148 (1961). 

L. B. Robinson, Phys. Rev. 105, 922 (1957). 
- 

- 
S. J. Smith, in Proc. Fourth Int'l. Conf. on lonizatian Phenomena in Gases, 
Uppsala, 1959, edited by N. R. Nilsson (North-Holland Publishing Co., 
Amsterdam, 1960), p. 219. 

S. J. Smith and L. M. Branscomb, Rev. Sci. Inst. 31, 733 (1960). - 
R. M. Sternheimer, Phys. Rev. 96, 951 (1954). 

A. Temkin, Phys. Rev. 107, 1004 (1957). 
- 

- 
111.  Reports 

R. S. Berry, J. C. Mackie, R. L. Taylor and R. Lynch, Spin-Orbit Coupling 
and Electron Affinity Determination From Radiative CaDture of Electrons bv I 

~ I 

Ox gen Atoms. Research Report 2 16, AVCO-Everett Research Laboratory, 

R. G. Breene, Jr., RVlP Reentry Radiation Measurements. A Theoretical 
Background (U). Physical Studies, Inc., SR No. 1, Kettering, Ohio (1964). 

* 
P. J. Nawrocki and R. Papa, Atmospheric Processes, Geophysics Corporation 
of American, GCA No. 61-37-A, Bedford, Massachusetts (1961). 


